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Adjoint-Based k-Eigenvalue Sensitivity Coefficients to Nuclear Data Using Continuous-Energy

Monte Carlo

Brian C. Kiedrowski, Forrest B. Brown

Abstract – A continuous-energy Monte Carlo method is developed to compute adjoint-

based k-eigenvalue sensitivity coefficients with respect to nuclear data. The method is im-

plemented into MCNP6 and is based upon similar methodologies used to compute other

adjoint-weighted quantities. The Monte Carlo tallies employed are explained. Verification of

the method is performed by comparing results to analytic solutions, direct density perturba-

tions, and those from other software packages such as TSUNAMI-3D and MONK. Results of

analytic solutions agree within a few tenths of a percent. Direct density perturbations and

comparisons with other software generally agree within a few percent.

Keywords – MCNP; uncertainty analysis; perturbation; cross section
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1 INTRODUCTION

Monte Carlo software packages have been used for computing sensitivity coefficients to the

effective multiplication factor k for sensitivity and uncertainty analysis for several years

[1, 2, 3, 4]. To date, most implementations, such as TSUNAMI-3D [5] that is part of the

SCALE package developed by Oak Ridge National Laboratory (ORNL), have used multi-

group cross-section data. This presents difficulties involving group collapse and self shielding,

necessitating the calculation of implicit sensitivity coefficients, which is the impact of the

multigroup approximation on the sensitivity coefficients. Because of these complications, and

the desire for higher fidelity with a simpler work flow, there has been a push within the US

Department of Energy National Nuclear Security Agency (DOE/NNSA) Nuclear Criticality

Safety Program (NCSP) to develop continuous-energy sensitivity coefficient capabilities.

Such a capability, based on adjoint methodologies similar to those employed in TSUNAMI-

3D, has been developed by Los Alamos National Laboratory (LANL) in MCNP6 [6] and is

available in the initial production version. Also included in MCNP6 is a related capability,

called KPERT, for adjoint-weighted perturbations from material substitutions, which have

been employed for sensitivity coefficient calculations [7]. While material substitutions allow

for more general perturbations, practical limitations lead to the introduction of an approx-

imation in the handling of scattering laws that leads to large and unacceptable deviations

in scattering sensitivities. Additionally, the interface is designed with a different intent, and

some users may find it cumbersome to use for sensitivity coefficient calculations.

For these reasons, a similar capability, called KSEN, that is more accurate and efficient,

and easier to use than KPERT for this purpose, has been developed. The details of the

Monte Carlo implementation and the associated tallies are discussed. Verification of the

capability is performed by comparing results against analytic solutions of simple problems,

direct density perturbations, and those generated by other software. The benchmarks se-

lected for inter-software comparisons are the Organisation for Economic Cooperation and

Development/Nuclear Energy Agency, Working Party on Nuclear Criticality Safety Expert
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Group on Uncertainty Analysis for Criticality Safety Assessment Phase III Benchmarks [8]

(called OECD/NEA UACSA Phase III Benchmarks for short). Results of sensitivities to

angular scattering distributions for 239Pu in Jezebel are also given. Finally, performance

and computational requirements of the method and implementation are discussed.

2 MCNP6 KSEN METHOD

The method for calculating sensitivity coefficients in MCNP6 employs the adjoint-based

methodology that is used in TSUNAMI-3D. First, the theory and mathematical models

governing the adjoint-based method are explained, and then the tallies employed in MCNP6

are discussed.

2.1 Sensitivity Coefficient Background

From linear perturbation theory, the following relation can find a differential change in k

resulting from a differential change in cross section:

dk = −
〈
ψ†, (dΣt − dS − λdF)ψ

〉
〈ψ†, λ2Fψ〉

, (1)

where ψ is the forward flux and ψ† is its adjoint, λ = 1/k, Σt is the macroscopic total cross

section, S is the integral scattering operator, F is the total integral fission operator, and the

brackets denote integration over all space, angle, and energy variables.

For sensitivity and uncertainty analysis, the sensitivity coefficient for k, Sj
k,x, to some

nuclear data xj (x is a cross section, fission ν, etc. over some energy range, and j is a

specific isotope) is desired. The sensitivity coefficient is defined as the ratio of the fractional

change in k for a corresponding fractional change in xj, or

Sk,x ≡
xj

k

dk

dxj
. (2)
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By manipulating Eq. (1),

Sj
k,x =

〈
ψ†,Pj

xψ
〉

〈ψ†, λFψ〉
, (3)

where Pj
x is the perturbation operator defined as

Pj
x =

(
−N jxjδx,t + Sj

x + λF j
x

)
δgδz, (4)

Sj
x is the scattering operator for xj exclusively,

Sj
x = N j

∫∫
dE ′ dΩ′

L∑
l=1

δx,sl f
j
sl(E, Ω̂ |E ′, Ω̂′ )mlσ

j
sl, (5)

and F j
x is the total fission operator for xj exclusively,

F j
x =

N j

4π

∫∫
dE ′ dΩ′

C∑
c=1

[
δx,pcχ

j
pc(E|E ′)νj

pσ
j
fc

]
+

I∑
i=1

[
δx,diχ

j
di(E|E

′)νj
diσ

j
f

]
. (6)

The variables are as follows:

E ′ = incident energy variable,

Ω̂′ = incident direction unit vector,

E = outgoing energy variable,

Ω̂ = outgoing direction unit vector,

N j = atomic density of isotope j,

δx,t = one if x is a cross section and zero otherwise,

δg = one if energy of neutron is within specified range g and zero otherwise,

δz = one if neutron is within spatial region z and zero otherwise,

l = index for the scattering reaction,

δx,sl = one if x is involved with scattering reaction l and zero otherwise,

fsl = scattering energy-direction transfer function for reaction l,

ml = multiplicity of the scattering event [e.g., (n,2n) has ml = 2],
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σsl = scattering cross section for reaction l,

c = index for the chance of prompt fission,

δx,pc = one if x is involved with prompt fission chance c and zero otherwise,

χpc = prompt fission energy transfer function for chance c,

νp = mean prompt neutron emission,

σfc = fission cross section for prompt chance c,

i = delayed neutron precursor index,

δx,pi = one if x is involved with delayed fission precursor group i and zero otherwise,

χdi = delayed fission energy transfer function for precursor group i,

νdi = mean delayed neutron emission for precursor group i,

σf = total fission cross section.

Another convention defined is that the energies used to determine range g are incident

for cross sections and fission ν, and outgoing for scattering or fission-χ transfer functions.

For the transfer functions, sensitivities may also be further restricted to incident energy E ′

(with bin index g′), and (for scattering) direction cosine change µ (with bin index n).

The energy-resolved sensitivities computed are actually bin-integrated. For the case of a

cross-section or fission-ν sensitivity,

Sj
k,x,g =

∫ Eg

Eg−1

dE Sj
k,x(E), (7)

where the integrand Sj
k,x(E), with explicit dependence on E, is taken to the be the “sensitivity

density” with units of per energy. The energy-integrated sensitivity is

Sj
k,x =

∫ ∞

0

dE Sj
k,x(E). (8)

The sensitivities to the scattering law or fission-χ transfer functions are defined similarly,

except they can have direction cosine change and incident-energy bins.

The transfer functions themselves are probability density functions conditional on the
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incident energy (the standard notation for conditional probability densities is used where

the variables to the left of the vertical bar are conditional on the variables to the right), and

are normalized to unity. Because of this constraint, the total sensitivities over all outgoing

energies and direction changes for a given incident-energy bin must sum to zero – increasing

the transfer function somewhere must be offset by a corresponding decrease somewhere

else. For this reason, MCNP6 computes the constrained sensitivity coefficient for transfer

functions, Ŝj
k,x. Note that the sensitivities for cross sections, such as fission or scattering,

are not constrained, as there is no normalization condition to impose, and are therefore

unaffected.

For scattering laws,

Ŝj
k,f (E, µ|E

′) = Sj
k,f (E, µ|E

′)− f j(E, µ|E ′)Sj
k,f (E

′), (9)

and for fission χ,

Ŝj
k,χ(E|E ′) = Sj

k,χ(E|E ′)− χj(E|E ′)Sj
k,χ(E ′). (10)

These relationships are continuous in energy (incident and outgoing) and angle. In practice,

discrete forms of these are needed to do calculations. The respective discrete forms of these

are

Ŝj
k,f,g,g′,n = Sj

k,f,g,g′,n − f j
g,g′,nS

j
k,f,g′ , (11)

Ŝj
k,χ,g,g′ = Sj

k,χ,g,g′ − χj
g,g′S

j
k,χ,g′ . (12)

To account for the incident energy dependence of f j and χj within the chosen interval,

a weighted-average transfer function is used, where the weighting function is the neutron

secondary production from the reaction of interest:

f j
g,g′,n =

∫ µn

µn−1
dµ

∫ Eg

Eg−1
dE

∫ E′
g′

E′
g′−1

dE ′ f jmlN
jσj

s∫ 1

−1
dµ

∫ ∞
0
dE

∫ E′
g′

E′
g′−1

dE ′ f jmlN jσj
s

, (13)
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χj
g,g′ =

∫ Eg

Eg−1
dE

∫ E′
g′

E′
g′−1

dE ′ χjN jνjσj
f∫ ∞

0
dE

∫ E′
g′

E′
g′−1

dE ′ χjN jνjσj
f

. (14)

There is a problem, however, with averaging and integrating over the incident energy depen-

dence. The f j
g,g′,n and χj

g,g′ must be computed on a fine enough incident-energy resolution

such that the transfer function shape does not change significantly within the incident-energy

interval. This assumption works reasonably well for fission χ, which is a weak function of

incident energy over the range of interest, but does not apply nearly as well for scattering

laws, which can vary significantly as a function of incident energy.

Picking an inappropriately large incident-energy bin will yield a different constrained

sensitivity than the sum of constrained sensitivities computed from finely resolved incident-

energy bins. This is different than unconstrained sensitivities (or constrained sensitivities

over outgoing energy bins or direction changes), which are always additive. For now, it is

up to the user to pick an appropriately fine incident-energy grid to perform the calculations.

In the future, research will be done to automate the process so that appropriate values of

the transfer functions will be used and the sums will come out correct regardless of the

incident-energy binning chosen.

One final comment on the sensitivities of transfer functions is that MCNP6 uses outgo-

ing energies and directions that are on the table. For all but one inelastic scattering law,

correlated energy-angle scattering (law 67 in MCNP), this is in the center-of-mass frame.

Note that some of the results in this paper explicitly are in lab-frame coordinates to test the

method, in contradiction to the usual MCNP6 convention. Which reference frame used for

each scattering law sensitivity calculation is explicitly stated throughout this paper.

2.2 Tallies and Scoring

As seen from Eqs. (3) and (4), there are adjoint-weighted tallies involving total interac-

tions, scattering, and fission for xj and one for the adjoint-weighted fission source in the

denominator – a total of four, but, in practice, only one is needed because the three tallies
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in the numerator can be combined and the denominator does not require any extra storage.

MCNP6 uses the Iterated Fission Probability methodology [9] to compute adjoint-weighted

tallies.

The Iterated Fission Probability methodology relies on the interpretation of the adjoint

function as the expected number of neutrons in a system (or, more generally, any response),

after infinitely many generations, caused by a neutron at a location in phase space [10, 11]

(e.g., arising from a reaction of some sort in this case). To facilitate computing the adjoint-

weighted tallies, the active cycles (batches, generations) are grouped into B contiguous blocks

with index b of fixed size. In the first cycle within the block, original (non-adjoint weighted)

contributions Tq of tallies are evaluated and stored (the variables on the right side of < · , · >)

and the neutrons are tagged with index q (the total number of these indices within a block

is Q) so that later which neutron is associated with which contribution is known. The index

q is distinct from the history index, because whenever a neutron history branches, such as

in an (n,2n) reaction or when an implicit capture event creates a fission neutron and the

original neutron continues, a new index is needed. These tags are inherited by subsequent

progeny within the block of generations. In the final cycle within the block, fission neutron

production estimates (asymptotic populations) Rq are made and summed for all neutrons

with the same tag and multiplied by the associated contributions Tq to obtain a score for

the adjoint-weighted tally.

With regards to the original contributions, either track-length or collision estimators may

be used for the total interaction term, and either analog or expected-value estimators may

be used for the scattering or fission terms. In MCNP6, the track-length estimator is used

for the total interaction term, the analog estimator is used for the scattering term, and

the expected-value estimator is used for the fission term. The reasons for this are solely

based upon convenience. Regardless of which types MCNP6 actually uses, all the mentioned

estimators are discussed. The first three are grouped in the (adjoint-weighted) numerator

A(b) for block b, and the corresponding (adjoint-weighted) denominator is denoted by D(b).
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2.2.1 Total Interaction Term

The total interaction term is computed in MCNP6 by a track-length estimator. For each

simulated Monte Carlo track,

δx,tN
jxj`, (15)

(` is the length of the track) is subtracted from the original contribution in the numerator

Tq, because this represents a net loss in neutrons.

The collision estimator is

δx,t
N jxj

Σt

. (16)

The collision estimator is not used by MCNP6 for this purpose but is included for complete-

ness.

2.2.2 Scattering Term

At each collision where a non-fission secondary emerges, the scattering reaction z occurs

with some isotope h. The expected-value estimator is the ratio of the double-differential

scattering cross section for all xj for the energy and direction change that occurred to the

corresponding total double-differential scattering cross section.

δx,sl
f j

slmlΣ
j
sl

fslmlΣsl

(17)

is added each collision to the numerator original contribution Tq. To clarify, the variables in

the numerator with the j superscript are for specific isotopes, and the terms in the denom-

inator sans superscript are for all possible colliding isotopes whether sensitivity coefficients

to those isotopes are desired for them or not. Furthermore, all l and j are accumulated inde-

pendent of the actual collision that occurred; hence, it is called an expected-value estimator.

For most scattering reactions, however, such as elastic scattering with a stationary target

or inelastic-level scattering, the double-differential scattering cross section involves a Dirac
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delta function, and the ratio is one if l = z and j = h and zero otherwise. While other

scattering reactions may have ratios between zero and one, often times these are difficult

and time consuming to compute in practice because of the various representations of the

Evaluated Nuclear Data File (ENDF) scattering laws used by MCNP6, and therefore an

analog estimator may be more appropriate, and that is what is actually used.

The analog estimator added to Tq at each collision is

δx,zδj,h. (18)

In other words, one is added only if x = z and j = h. Of course, in the limit of infinitely

many collisions, both the analog and expected-value estimators are the same.

2.2.3 Fission Term

Like with scattering, neutrons emerge from fission from reaction z (e.g., prompt or delayed

and considering various chances of fission) with isotope h. The fission term is calculated for

each source emission at the beginning of the block of generations.

Much like for the scattering term, the expected-value estimator for the fission term is

δx,f

χjνjΣj
f

χνΣf

, (19)

and is added to Tq at each simulated source emission event. Note that since this is per-

formed at source emission at MCNP6, the incident energy causing fission must be stored

and transferred between cycles in addition to the outgoing energy that is normally stored.

The analog estimator for the fission term is identical to that of scattering term in Eq.

(18) except here z and h are for fission reactions and isotopes.

MCNP6 uses the expected-value estimator for the fission term because fission χ is given in

MCNP6 as one of three fairly simple scattering laws where the outgoing energies are specified

as tabular data (most common in the newer evaluations), or are computed by evaluating a
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function (e.g., Watt fission) where the fitting parameters are specified by tabular data.

Furthermore, fission χ is both continuous and univariate (in outgoing energy), being far

easier to calculate than the bivariate probability density for scattering, which is dependent

on both the outgoing energy and direction cosine change.

2.2.4 Denominator Term

The denominator term does not require storing any information that is not already being

computed. Simply finding the average of total asymptotic populations of all neutrons gives

λ times the adjoint-weighted fission source.

2.2.5 Scoring and Computing Means and Variances

Once the asymptotic populations Rq are known from the forward simulation, the adjoint-

weighted estimates for A(b) and D(b) can be found by

A(b) =
1

Q

Q∑
q=1

RqTq, (20)

D(b) =
1

Q

Q∑
q=1

Rq. (21)

Taking the ratio gives an estimate for each Sk,x, which are the tally scores for block b,

S
j,(b)
k,x =

A(b)

D(b)
. (22)

The average of these over numerous blocks should converge to the true sensitivity coefficient

for a given set of inputs. The mean value reported by MCNP6 is the simple arithmetic mean

over all the blocks B,

Sj
k,x =

1

B

B∑
b=1

S
j,(b)
k,x . (23)
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The variance or standard deviation is computed using basic sample statistics like any other

tally. Note that correlation between the numerator and denominator is implicitly included

because the averaging occurs after the division; however, the correlation that arises because

a block impacts subsequent blocks is not included. Neglecting inter-block correlation is a

reasonable assumption, since blocks are sequences of typically five to ten neutron cycles and

correlation between cycles that separated is usually small. Therefore, the expected bias of

the estimated statistical uncertainties is small.

3 VERIFICATION & RESULTS

Verification is performed in three ways: (1) using simple two-group, infinite-medium prob-

lems with readily obtainable analytic solutions, (2) comparisons of sensitivities calculated

from a ∆k obtained from direct perturbations of isotopic densities, and (3) by comparisons

to results of other software packages such as TSUNAMI-3D and MONK [12]. The reference

problems used for software comparison are those of the OECD/NEA UACSA Phase III Sen-

sitivity benchmarks, which has three cases, each having subcases. Results are also given for

sensitivities to angular scattering distributions for the Jezebel benchmark.

3.1 Comparisons to Analytic Solutions

To test that MCNP6 can compute sensitivities to nuclear data correctly, three simple, multi-

group1, infinite-medium test problems are constructed. The goal of the first is to test the

ability of MCNP6 to compute sensitivities to cross sections. The second, in addition to

cross-section sensitivities, tests the computation of both the unconstrained and constrained

fission-χ sensitivities. The third analytic test specifically verifies the calculation of uncon-

strained and constrained scattering transfer function sensitivities.

Note that doing verification with multigroup calculations does not stress all the portions

1While MCNP6 (and earlier versions of MCNP) are capable of multigroup calculations, this feature exists
for purposes of code comparisons or method validation; there are no self shielding or implicit sensitivity
capabilities as the software is focused on being continuous energy.
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of relevant MCNP6 coding that would be used for continuous-energy calculations. There

is, however, a significant overlap in the internal mechanics between them, even if some of

the details for handling different reaction numbers are somewhat different. So while the

verification is not complete when applied to continuous energy, it still covers significant

sections of code.

3.1.1 Analytic Problem 1

A simple test problem is constructed, an infinite-medium problem with two energy groups.

The test problem has all fission neutrons born in the group 1, the top energy group, and

there is no scattering from group 2 to 1. The nuclear data are given in Table I and are

chosen so that k = 1.

The analytic solution for k is

k =
ν1σf1

σR1

+
ν2σf2

σR2

σs12

σR1

, (24)

where σRg is the removal cross section for energy group g, which is σRg = σtg − σsgg.

Sensitivity coefficients to the nuclear data are obtained by differentiating Eq. (24) with

respect to the corresponding data. These reference sensitivity coefficients and the results

computed by MCNP6 are given in Table II, and all agree within a few tenths of a percent

as determined by the C/E ratio (note that the E in C/E in this paper means “expected”

and not “experimental” result, as it usually does, and the C/E is only a valid measure

when that reference value is non-zero). The sensitivities to total cross sections, within group

scattering, and fission χ are not shown, because they are zero, and MCNP predicts a value

that approaches zero for them.
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3.1.2 Analytic Problem 2

A second infinite-medium problem with three energy groups is constructed with the following

features: fission only occurs in group 3, fission neutrons may be produced in all groups,

downscattering is restricted to the subsequent group, and there is no upscattering. The

nuclear data are given in Table III, and are chosen again to make k = 1.

The analytic solution for k is

k =
ν3σf3σs23

σR2σR3

[
σs12

σR1

χ1 + χ2 +
σR2

σs23

χ3

]
. (25)

Sensitivity coefficients to the nuclear data are obtained by differentiating Eq. (25) with

respect to the corresponding data, and for constained fission χ, applying Eq. (12). Those

sensitivity coefficients that are non-zero are displayed in Table IV along with the correspond-

ing MCNP6 calculated results. These sensitivities include cross sections, fission ν, and both

unconstrained and constrained fission χ. Both cross-section and fission-χ sensitivities (con-

strained and unconstrained), like with the cross-section sensitivities in Analytic Problem 1,

agree within a few tenths of a percent as indicated by the C/E ratios.

The unconstrained fission-χ sensitivities are an effective increase in the multiplicity, but

at the neutron emission energy as opposed to the incident neutron energy for fission ν. This is

an increase in fission χ in some energy region without renormalizating the overall distribution,

which is neither mathematically nor physically meaningful. Since an increase in the number

of neutrons per fission always leads to an increase in k by definition, the unconstrained

fission-χ sensitivity is always positive. The constrained fission-χ sensitivity is that of the

renormalized distribution. Increases somewhere must be offset by decreases somewhere else

(in this case, everywhere else), and therefore the constrained fission-χ sensitivity is both

positive and negative.

For this problem, increasing the fission χ in group 1 leads to a decrease in reactivity. This

is because the average importance of neutrons emitted from fission decreases, as the number
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of neutrons emitted in group 3 decreases while the number emitted in group 1 increases.

Since fission only occurs from neutrons in group 3 and are therefore the most important,

having fewer of them and more less important neutrons leads to a decrease in the overall

importance. Conversely, increasing the fission χ in group 3 while decreasing fission χ in

the other groups, leads to an increase in reactivity, and therefore the constrained fission-χ

sensitivity there is positive. The constrained fission-χ sensitivity for group 2 happens to

come out slightly positive, and is a consequence of the combination of both the positive

effect of having fewer neutrons having to scatter from group 1 to 3 to cause fission, and the

negative effect of having fewer neutrons emitted directly in group 3 and causing fission.

3.1.3 Analytic Problem 3

The third infinite-medium problem tests constrained sensitivities for scattering laws. The

problem contains four groups and the data are given in Table V. This problem is somewhat

unphysical in that neutrons in group 1 can downscatter into any of the three other groups,

but downscattering in groups 2 and 3 can only occur into the subsequent group. There is

no upscattering, fission neutrons are only produced in group 1, and fission can only occur in

group 4.

The analytic solution for k, which equals unity when the data in Table V are used, is

k =

(
ν4σf4σs1

σR1σR2σR3σR4

)
[f14σR2σR3 + f34σs3 (f13σR2 + f12f23σs2)] . (26)

Here fij is the probability of scattering from group i to j, and σsij = fijσsi.

Solutions for the sensitivity to the scattering laws from group 1, the f1j’s, are desired.

These are obtained analytically and, to test the constraining methodology, from MCNP6

calculations with direct perturbations to the multigroup scattering data. Direct perturba-

tions are done by perturbing the isotopic number density by some small amount (in this

case 1%), calculating a new k to find a ∆k, and then using a discrete approximation of Eq.
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(2) to estimate the sensitivity. Both the analytic and MCNP6 calculated unconstrained and

constrained (both from direct calculations and with the adjoint-based method) scattering

law sensitivities are given in Table VI. The results of the direct MCNP6 calculations agree

within 10% of the analytic results, confirming the constraining is done consistently. The

adjoint-based sensitivity coefficients agree within the 2-σ statistical uncertainties, which are

all under 2%.

Note that the sensitivity for the probability of within-group scattering in group 1 is

non-zero in both the unconstrained and constrained cases, whereas the sensitivity to the

within-group scattering cross section σs11 is zero. This may be a counterintuitive result.

Increasing a within-group scattering cross section in an infinite-medium problem may change

the relative number of collisions in that group, but it does not have any effect on the reactivity

because there is no change in the group’s steady neutron population nor is there a change

in the rate that neutrons transfer to groups with a different importance – this is not true

for finite medium problems because leakage is present. Mathematically, from Eq. (1), the

positive effect from increasing scattering is directly offset by the negative effect of additional

interactions by increasing the total cross section.

Increasing the scattering probability, however, is an effective increase in the multiplicity

of scattering events, as unphysical as that may be [in multigroup, this could be thought of

as increasing the (n,2n) rate, which is often grouped with scattering, but this explanation

does not apply as well for continuous-energy where all reactions are treated explicitly]. From

Eq. (1), the positive effect from scattering source is present, but the negative effect from

increasing the total cross section is absent, meaning that the unconstrained sensitivities for

distributions (both scattering and fission χ) are always positive. Like with fission χ, since

the probability density must be normalized, an increase of scattering into one group must be

offset by decreases of scattering into other groups. This causes portions of the constrained

sensitivity to be negative.

For this problem, increasing the rate of within-group scattering for group 1 has a relatively
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strong negative effect because fewer neutrons are scattering directly into group 4 where

they may cause fission, or into the other groups where their chances are better. Increasing

scattering into group 2 is negative for similar reasons, but is less so because neutrons are

more likely to reach group 4 from group 2 and cause fission, having escaped capture in group

1. Increasing scattering into group 3 is slightly positive, because neutrons scattering to group

3 have a better chance of causing fission in group 4 and they are doing less scattering into

the less favorable groups 1 and 2 causing a positive effect, but this is mostly offset by the

decrease of scattering directly into group 4. Increasing the scattering directly into group 4

has the strongest positive effect because it both brings neutrons into the group where they

can cause fission, and decreases the amount of neutrons scattering to less favorable groups.

3.2 OECD/NEA UACSA Phase III Benchmark Comparisons

Comparisons to either other software, direct density perturbations, or both are made using

the OECD/NEA UACSA Phase III Sensitivity benchmark. The purpose of the benchmark

is to provide a series of common models by which various Monte Carlo software packages can

be compared. The benchmark has three cases or phases: Phase III.1 is a finite square lattice

of MOX fuel pins reflected by water, Phase III.2 is a series of infinite pin cell arrays with

varying pitches, and Phase III.3 consists of two spheres of UF4 mixed with polyethylene, one

with low-enriched uranium (LEU) and the other with intermediate-enriched uranium (IEU).

Details of the benchmarks and reference results may be found in Ref. [8].

All MCNP6 calculations use ENDF/B-VII.0 nuclear data [13]. A selection of the results

generated for the benchmark are presented, with particular attention given to those with

reported results from other Monte Carlo software packages found in Ref. [8]. Specifically,

the co-authors of Ref. [8] who generated the results for ORNL TSUNAMI-3D and MONK

were kind enough to share numerical results, and those are used as the basis for comparison.

The Monte Carlo software packages that are used in Ref. [8] for comparison for the bench-

marks are TSUNAMI-3D, MONK, DRAGON-SUSD3D [14], APOLLO2-MORET 5 [15], and
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MMKKENO [2].

3.2.1 OECD/NEA UACSA Benchmark Phase III.1

Phase III.1 is an array of MOX fuel pins immersed in light water, simulating a criticality

accident where a lattice of MOX fuel in a storage or shipping cask is flooded. This is

based on the benchmark within the International Handbook of Evaluated Criticality Safety

Benchmark Experiments (ICSBEP) having the identifier MIX-COMP-THERM-001-001 [16].

Within III.1, there are also four subcases: a 3-D detailed model, a homogenized Cartesian

model, a homogenized cylindrical model, and an infinite array of fuel pins. MCNP6 results

are presented only for the detailed model. The homogenized cases involve requiring special

treatment generating something called implicit sensitivities from the homogenization process;

MCNP6 does not support homogenization, and is specifically designed for detailed models.

The detailed 3-D model is a square lattice with a pitch of 0.9525 cm. The lattice is 28 ×

22, except for the top row, which has only 17 pins, for a total of 605 pins. The fuel pins have

a diameter of 0.5842 cm and a height of 91.44 cm. The areas axially above and below are

buffers that are treated as homogenized mixtures of water and pin materials. A light-water

scattering kernel is used for thermal scattering with hydrogen in the water.

Energy-integrated sensitivity coefficients are computed for each isotope in the problem

for the following nuclear data: total, (n,γ) capture, elastic scattering, inelastic scattering

(all 40 discrete levels plus continuum), fission, (n,2n), and fission ν. The ten most sensitive

nuclear data (except for the totals) are given in Table VII. For comparison, C/E values

are given for TSUNAMI-3D results generated by ORNL (238-group ENDF/B-VII.0 cross

sections are used). The C/E values agree within about five percent.

Energy-resolved sensitivities to the 238U total cross section computed by MCNP6, TSUNAMI-

3D, and MONK (using JEF-2.2 nuclear data) are shown in Fig. 1. All results mostly agree,

with some small discrepancies between TSUNAMI-3D and the results from either MONK or

MCNP6.
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Note that the original ORNL TSUNAMI-3D values published in Ref. [8] show significant

disagreement of about 50% with MONK and MCNP6. The differences arise from the 238U

capture resonances. The ORNL participants were contacted by the authors and new, more

accurate results were provided. The original discrepancies were from not including the im-

plicit sensitivity coefficients, which account for the self-shielding effects. Note that, MONK,

like MCNP6, uses continuous-energy data, except that it uses the differential operator or

Taylor series technique, which should converge to the same result [17]. Since MCNP6 agrees

with both MONK and TSUNAMI-3D (with implicit sensitivities included), this supports the

conclusion that the software is calculating energy-resolved sensitivity coefficients correctly.

This affirms the importance of doing multiple code comparisons with established bench-

marks, as is being done with these OECD/NEA UACSA Phase III sensitivity benchmarks.

Note that the originally reported ORNL TSUNAMI-3D results were not the only ones in Ref.

[8] that disagree with with MCNP6, MONK, and the revised ORNL TSUNAMI-3D results.

Many of the other participants reported similar discrepant results, while others reported ones

that agree with those shown here. There does not seem to be any trend between which set

of results were calculated and code, version number, or nuclear data between the multigroup

methods. This illustrates the advantages of a continuous-energy implementation, as there

is no need for the generation of implicit sensitivity coefficients and the possible error of not

including them. The work flow is significantly simpler, and the chance of undetected user

error is reduced.

Fig. 2 shows energy-resolved elastic scattering sensitivities for 1H computed by MCNP6,

TSUNAMI-3D, and MONK. Agreement between the software packages observed, with a few

minor differences for some of the 239Pu resonances for MONK, which may be attributable

to using JEF-2.2 nuclear data rather than ENDF/B-VII.0.

Constrained fission-χ sensitivities of 239Pu for MCNP6 and TSUNAMI-3D are displayed

in Fig. 3. The agreement is very good; both software packages exhibit the same general

features and are largely within the 2-σ statistical uncertainty of the MCNP6 results. This
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agreement suggests MCNP6 is computing constrained fission-χ sensitivities correctly.

Results of the constrained sensitivities (per lethargy) to the total elastic scatter transfer

distribution for 1H are given in Figs. 4-6 (fast, epithermal, and thermal energy ranges) as

a function of both incident and outgoing energy. The sensitivities given here are for exiting

neutron energies in the lab frame. For the fast region, most of the neutrons with incident

energies between 1-4 MeV have sizable negative constrained sensitivities for scattering within

that same range, and small and more widely distributed positive sensitivities for downscat-

tering into the 100’s of keV energy range. The trend tends to continue downward along the

diagonal in the fast region. The epithermal region shows relatively high negative sensitivi-

ties for downscattering into low-lying 238U resonances, with the one at about 6.67 eV being

most dominant. For the thermal region, scattering within an energy range or slightly higher

appears to have a sizable positive sensitivity, as does upscattering in the 0.01-0.03 eV range.

Downscattering at thermal energies has the largest negative sensitivity in this region.

The constrained total scattering sensitivity [including elastic, inelastic, (n,2n), etc.] to

16O is displayed for the fast region in Fig. 7. This shows a relatively strong sensitivity

(negative for small energy losses and positive for larger ones) for fission neutron energies.

The scattering distributions of 16O for the rest of the energy range are not all that significant

and, as such, are not displayed.

To the authors’ knowledge, the ability to compute sensitivities to scattering transfer

distributions is unique to MCNP6 as of the writing of this paper, and therefore no reference

results are available to use for comparison.

3.2.2 OECD/NEA UACSA Benchmark Phase III.2

Phase III.2 is an infinite array of the same MOX fuel pin in Phase III.1. For this phase, there

are seven different subcases (pitch configurations) with lattice pitches of 0.586 cm, 0.60 cm,

0.66 cm, 0.73 cm, 0.9525 cm, 1.05 cm, and 1.15 cm. Sensitivity coefficients are computed

for each subcase. The primary purpose of this benchmark is to test the implicit sensitivity
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coefficient calculation, which is the differential change in k from the energy group collapse.

Since this is a requirement of multigroup codes, and MCNP’s purpose is continuous-energy

physics, there is no implicit sensitivity coefficient. In either case, MCNP6 should be able to

match final results.

Decent agreement is observed with the other benchmark participants in Ref. [8], espe-

cially those by the MONK code, which uses continuous-energy physics. Unfortunately, there

is a fairly large spread in the 238U total cross-section sensitivities ranging from -0.03 to less

than -0.01 for pitch configuration 1. Like with those of Phase III.1, it appears the results

can be grouped into two sets, suggesting an issue as to whether or not implicit sensitivities

are included. This is complicated, however, by different data sets and the lack of quantified

statistical uncertainties in many cases.

Despite the efforts of the authors, the reasons for these differences could not be identi-

fied. Therefore, rather than reporting code-to-code comparisons, comparisons with direct

perturbations are performed. Perturbations of 1H , 16O , 238U , 239Pu are done for each

pitch configuration. The isotopic number densities are increased as follows: 1H by 1%, 16O

by 2%, 238U by 10%, and 239Pu by 1%. The relative magnitudes of the perturbations are

chosen to ensure ∆k can be estimated with enough statistical significance.

The results of the MCNP6 total cross-section sensitivities computed both by KSEN

and directly are displayed in Fig. 8. 26 of the 28 results agree within the 2-σ statistical

uncertainty bands. The two that disagree are the 238U sensitivity for configuration 2 and

the 239Pu sensitivity of configuration 5. The former overpredicts (in magnitude) by about

2.7σ and the latter by about 2.2σ. The 2-σ band forms a 95% confidence interval, so it is

expected about 1 out of 20 cases should fall outside of that interval. Therefore, the outliers

here can likely be attributed to random chance, and not some systematic bias in the results.
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3.2.3 OECD/NEA UACSA Benchmark Phase III.3

Phase III.3 has two subcases: one using LEU (2 atom percent 235U ) and the other using

IEU (50 atom percent 235U ). This is based on the test problem in Ref. [1]. The radii of the

two subcases are 36 cm and 18.2 cm respectively. Neutron thermal scattering with hydrogen

is treated with a polyethylene scattering kernel.

Comparisons are made with MCNP6 KSEN generated total cross-section sensitivities

to those generated by direct perturbations in MCNP6, adjoint-based multigroup methods

in TSUNAMI-3D, and continuous-energy differential operator methods in MONK. For the

direct perturbations, the isotopic number densities are increased as follows: 1% for 1H , 5%

for C, 2% for 19F , 1% for 235U , and 1% for 238U in the LEU subcase and 20% in the IEU

subcase.

The results of these are given in Table VIII. They largely agree, except for the 238U total

cross-section sensitivity in the IEU subcase, which is difficult to calculate because there are

positive and negative effects on the reactivity that roughly cancel. The difference of MCNP6

KSEN result is about a factor of three higher than the MCNP6 direct perturbation result.

Additionally, TSUNAMI-3D predicts a positive impact, whereas all the other calculations

predict a negative one. This case aside, the MCNP6 KSEN and direct perturbation results all

agree within about 5%. Note that the 1H result for the LEU subcase is slightly outside the

2-σ confidence interval, but tends to agree well with the other codes. Likewise, (excluding

the 238U IEU result) MCNP6 agrees with both TSUNAMI-3D and MONK within 5%.

Unfortunately, no statistical uncertainties are provided for the results of the other codes, so

no quantification of statistical significance can be made.

As for the outlier 238U IEU result and perhaps the 1H LEU result, remember there

is a particular caveat to comparing with direct perturbations. The implicit assumption is

that the ∆k is a linear function of ∆σ. So long as the perturbation is sufficiently small,

this should be satisfied. Here, even the 1% increase in hydrogen density may have been

enough to create a small, non-linear effect in ∆k because of spectral changes from additional
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downscattering (the results still agree within 3%, so this effect would be quite small if it exists

at all). The 20% increase in the 238U density for the IEU subcase may also be stressing the

linear assumption. While the overall effect of 238U on k is small, this again is the result of

competing effects, which may not change at the same rate with increasing the 238U density,

leading to a non-linear effect on ∆k.

3.3 Jezebel Scattering Distribution Sensitivities

To provide a further assessment of the ability of MCNP6 to produce sensitivities scattering

laws, analysis with the Jezebel benchmark (ICSBEP identifier PU-MET-FAST-001 [16]) is

performed. Jezebel is a nearly-spherical mass of plutonium (mostly 239Pu ), which is often

approximated as a simple sphere. A detailed benchmark specification of the experiment was

obtained [18], and sensitivities to the elastic and inelastic scattering laws of 239Pu were

computed with this model.

In contrast to the OECD/NEA UACSA Phase III benchmarks, which have thermal or

epithermal spectra, Jezebel has a fast spectrum and is much more leakage dominated. This

should magnify the effect of angular distributions upon the reactivity, and therefore have

higher sensitivity coefficients. The angle-resolved 239Pu elastic and inelastic scattering

distribution sensitivities are given in Fig. 9 – the direction cosines used are those of the

data table, which for this case are in the center-of-mass frame. This resultant profile is

integrated over all incident energies. Individual sensitivity profiles are obtained for each 0.1

MeV incident energy bin ranging from 0 to 20 MeV, and the profile in Fig. 9 is obtained by

summing them together. This removes the bias produced by integrating over too large of an

incident energy bin and then introducing the constraint.

First, the angular distribution of 239Pu elastic scattering has a much greater effect

than that of inelastic scattering. This makes sense as the energy-integrated cross-section

sensitivities for elastic and inelastic scattering are 0.062 and 0.038 respectively. From Fig.

9, there appears to be a relatively strong negative effect on reactivity for increasing the
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probability of forward-peaked elastic scattering of 239Pu . This is an expected result as a

majority of neutron losses occur from neutrons near the edge traveling toward the boundary.

Forward-peaked scattering does little to help these neutrons survive and cause fission, and

increasing the forward-peaked scattering must correspondingly decrease the less forward-

peaked or backward scattering, leading to a net increase in the leakage of neutrons and

therefore lower reactivity. Similar, but smaller trends are observed for inelastic scattering.

Unfortunately, to the knowledge of the authors, there are currently no published results

available for quantitative comparison for this benchmark. Nonetheless, the results do match

physical intuition, and offer some confidence that the MCNP6 results for this kind of cal-

culation are reasonable. If the angle-resolved elastic sensitivity is integrated for scattering

angles from 0◦ to 30◦, the net sensitivity for that range of -0.0167. Depending on the relative

uncertainties of the elastic scattering distribution (which tend not be known very well), it

may have a significant impact on the overall uncertainty of this benchmark. Future analysis

using these techniques will be used to quantify this uncertainty.

4 USER INTERFACE & METHOD PERFORMANCE

For a method to be of practical use, it must produce reliable results and be able to do so

with reasonable computational requirements. The interface should be easy to use and offer

flexibility, such that a user can generate needed results without too much effort. The input

format is a simple line (or “card” in the MCNP parlance) in the MCNP6 input file called

“ksen” where the user specifies a list of isotopes, reactions, an energy grid, and possibly

some other things (e.g., cosine bins) depending on what the user wants. Multiple instances

of the “ksen” card are possible. Specific details of the input file format are provided with

the MCNP6 documentation.

It should also be difficult to unintentionally generate incorrect results that are difficult to

detect. For example, the need for implicit sensitivity coefficients with multigroup methods

can lead to confusion, as appears to be the case for some of the results for the OECD/NEA
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UACSA Phase III benchmarks in Ref. [8]. Using a continuous-energy method, as MCNP6

does, removes this source of potential error.

Of course, even the most reliable method with the best user interface is not useful if it

takes too long to produce statistically significant results or requires too much memory. This

depends on both the method itself and the implementation within a software package. For

this reason, quantitative assessments of method performance are given. The results that

follow demonstrate is that MCNP6 can, for typical applications, produce sensitivities in a

reasonable time without demanding too much memory.

4.1 Computational Efficiency

The goal of a Monte Carlo calculation is to achieve the lowest statistical uncertainties for the

least amount of computational time – depending on the situation this can be either wall-clock

or computer (clock-cycle) time. To measure performance of the method, the OECD/NEA

UACSA Phase III.3 benchmark, the spheres of uranium fluoride in polyethylene, are used.

A batch size of 50,000 neutrons, 50 skip cycles, 1000 active cycles, and a block size of

10 generations for the adjoint-weighted sensitivity tallies are used. The calculations are

performed on Intel Xeon E5-2670 processors at 2.6 GHz with 32 GB RAM. KSEN works

both with Message Passing Interface (MPI) and Open Multi-Processing (OMP) threading

forms of parallelism in MCNP, and all calculations are run with 16 OMP threads. The

energy-resolved and energy-integrated sensitivities for 53 different reactions – total, total

elastic, total inelastic, all 40 individual inelastic levels in ENDF, inelastic continuum, (n,2n),

fission, fission ν, total capture, (n,γ), (n,d), (n,t), (n,3He ), and (n,α) – are calculated for

each of the five isotopes on the standard 238-energy group structure in TSUNAMI-3D (total

of 63,335 sensitivities).

First a calculation is performed for both the LEU and IEU subcases with and without

KSEN, and the increase in wall-clock time from the additional overhead is measured (using

the Linux/UNIX “time” utility). Second, the percent uncertainties of the energy-integrated
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total, elastic, and capture cross-section sensitivities for each isotope are given along with

the figure of merit (FOM) – the FOM is the inverse of the product of the computation time

and the square of the relative uncertainty, where the computational time used here is the

wall-clock time multiplied by the number of threads (in this case, 16). These results are

shown in Table IX.

The increased overhead for employing KSEN for this problem leads to increases in wall-

clock time by factor of 4.2 for the LEU subcase and 3.4 for the IEU subcase. Computing

a relatively large number sensitivities is not a trivial task for MCNP6, and calculations

may take significantly longer than a traditional eigenvalue calculation. Note that obtaining

just the 15 sensitivities displayed in Table IX increases computational run times by 5-10%.

Exactly how much extra time is needed depends on the number and type of sensitivities

required and the physics of the problem – it tends to scale with the expected number of

collisions per history. This explains the difference in the factors between the LEU and IEU

subcases, with the LEU subcase being a more thermal, near-critical system, and therefore

requiring more downscattering than the IEU one. While these increases may seem large, it is

worth considering that acquiring a large number of normal flux results or differential operator

perturbations in MCNP also incurs run time penalties as well. Also, the alternative of

perturbing the nuclear data files to obtain these results from direct perturbation calculations

is a very time consuming process on the part of the user, and may even take a greater amount

of simulation time to resolve small differences in k.

As for the figure of merit values, the absolute magnitudes are not all that relevant since

they are system dependent. The trend, however, is for capture cross-section sensitivities to

be easier to calculate than the others, as indicated by their higher figures of merit. This is

because the term is purely negative, and such quantities are far easier to estimate than those

that may be either positive or negative. While not given here, the same trend applies to

fission-ν sensitivities, which is a purely positive quantity. Scattering cross-section sensitivities

tend to be more difficult to compute, and usually have significantly lower figures of merit.
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Fission cross-section sensitivities (not shown here) tend to be easier than those for scattering

cross sections, but more difficult than capture or fission-ν sensitivities. Total cross-section

sensitivities are completely problem dependent, as evidenced by the large spread in figures

of merit, with the pathological 238U total cross-section sensitivity in the IEU subcase being

particularly notable. Whenever positive and negative effects almost exactly balance, that

corresponding sensitivity tends to be very difficult to estimate. As a general trend, isotopes

with greater abundance tend to have higher figures of merit, as expected. Future research

may focus on variance reduction techniques that would improve the sampling efficiency of

particular isotopes and reactions.

4.2 Memory Usage

It has been suggested [19] that the memory requirements for this technique can be very

high when a very large number of sensitivity coefficients (such as those involving numerous

isotopes and reactions, a fine energy group structure, and many regions) are desired. Ad-

ditionally, large memory requirements harm parallel scaling for MPI because passing large

amounts of data across the network is expensive. Observing the fact that the arrays for

each original neutron tend to be very sparse, special handling for such sparse data is em-

ployed that only stores which data are needed. For many problems, this reduces memory

requirements by a factor of 10-100 (of course, individual problems may vary significantly)

and improves parallel scaling.

To illustrate memory savings, consider the OECD/NEA UACSA benchmark problem

III.1 (the MOX lattice) where a large number of sensitivity coefficients are desired. The

problem specification includes 36 isotopes, 9 of which are fissionable. Suppose for each of

these 36 isotopes, 53 different reactions (same as the performance calculations) are desired

using the standard 238-energy group structure in TSUNAMI-3D. Additionally, fission-χ

sensitivities are desired for the 9 fissionable isotopes as a function of both incident and

outgoing energy on a 238 × 238 energy grid (same group structure). Finally, total, elastic,
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and inelastic scattering law energy transfer distributions are desired for 1H , 16O , 56Fe , and

238U on the same 2-D energy grid. This leads to a total of about 1.64 million sensitivity

coefficients. Note that many of these will not be used because many of the reactions have

thresholds or, for the case of the scattering energy transfer distributions, are kinematically

impossible.

Just multiplying the number of sensitivity coefficients by a reasonable batch size of 50,000

neutrons would lead to a base memory requirement of about 615 GB. This presumes one

8-byte real number for each sensitivity and source neutron, not including any additional

overhead information that must be stored to carry out the standard eigenvalue calculation

or for constraining the fission χ or scattering law sensitivities.

Because much of this memory is either not needed at all, or will, most likely, not be

required each history, significant savings can be made. A test of the present sparse data

handling scheme currently implemented in MCNP6 performed on the Turing cluster at LANL

(Quad-Core AMD Opteron model 8354 at 2.2 GHz or model 8356 at 2.3 GHz) using one

node having 16 CPUs and using all 16 OMP threads shows that the memory requirements,

as determined by the UNIX/Linux “top” utility, are only about 10 GB (including all of the

normal overhead, of which storing the original contributions for the sensitivity coefficients

are the vast majority), or a savings of over 98% relative to the theoretically required 615 GB.

If region-specific sensitivities are desired, the memory requirements would surely increase;

however, the increase would likely not be prohibitively large because within an individual

history, neutrons are likely to only visit a small portion of the cells in a complicated geometry

and only have a few energy states while visiting each of those. This shows that even for a

over a million sensitivities, the implementation in MCNP6 is such that while the memory

requirements can be large, they are likely not prohibitive.
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5 CONCLUSIONS

A continuous-energy k-eigenvalue sensitivity coefficient capability called KSEN is imple-

mented MCNP6 and helps meet the need of sensitivity and uncertainty analysis of critical

experiments within the US DOE/NNSA NCSP. The method is derived from adjoint-based

perturbation theory, as is TSUNAMI-3D, an ORNL software package for similar purposes.

The capability in MCNP6 allows users to compute energy-resolved nuclear-data sensitivity

coefficients to cross sections, fission ν, fission χ, and scattering energy-angle transfer distri-

butions – the last of which is, at the time of writing this and to the knowledge of the authors,

the only such capability that exists in a production Monte Carlo software package.

The methods are verified against analytic solutions of three multigroup, infinite-medium

problems, direct density perturbations, and against results of other Monte Carlo software

packages using the three cases of the OECD/NEA UACSA Phase III Benchmarks. The

results of the analytic calculations agree within a few tenths of a percent, verifying the

underlying routines in MCNP6. The continuous-energy calculations are verified using di-

rect density perturbations and TSUNAMI-3D and MONK calculations of the OECD/NEA

UACSA Phase III benchmarks, and the results generally agree within a few percent. Com-

parisons of calculated results from different codes show that while multigroup methods can

certainly find answers consistent with continuous-energy methods, the requirement of im-

plicit sensitivity coefficients to correct for the multigroup approximation introduces a source

of potential user error that continuous-energy methods avoid. Sensitivities to 239Pu elas-

tic and inelastic angular distributions in Jezebel are also given, and they follow physical

intuition.

Performance tests show that the computational resources needed for MCNP6 k-eigenvalue

sensitivity coefficient calculations are reasonable. As expected, MCNP6 calculations needing

sensitivity results takes longer and requires more memory than standard eigenvalue calcula-

tions. A test on OECD/NEA UACSA Benchmark Phase III.3 shows that MCNP6 requires

about 5-10% longer to compute 15 sensitivities, and about a factor of 4 increase in run
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time to compute about 63,000 sensitivities. A test of the memory requirements using the

OECD/NEA UACSA Benchmark Phase III.1 with over 1.6 million sensitivities and a batch

size of 50,000 neutrons shows that MCNP6 requires about 10 GB of RAM, a large, but not

prohibitive amount on modern computers.

Future research and development will focus on uncertainty propagation with ENDF co-

variance data. This will allow criticality safety practitioners to use MCNP6 in addition to

TSUNAMI-3D to perform uncertainty analysis. Another possible application is to apply

these techniques to the calculation of temperature coefficients for reactor analysis. Recent

research allows fast and efficient Doppler broadening to be performed in-line with the trans-

port simulation [20]. It should be possible, at least in theory, to adapt these approaches to

compute temperature coefficients as well. The sensitivity routines for nuclear data can also

be extended to handle the case of sensitivities to interface locations or boundaries, to address

the problem of propagating uncertainties arising from manufacturing tolerances or geometric

measurement uncertainties. A prototype of this is already done [21], and results mostly agree

with other methods; however, more research is needed to ensure that the techniques are cor-

rect and, if so, to make it a production-level capability within MCNP6. Another question

that remains open are the related issues of intra-block convergence of the importance weight

and inter-block correlations and their impact on resulting values and uncertainty estimates.

Such a study is important to understand theoretical issues of adjoint-weighted tallies needed

for sensitivity coefficients as well as other results such as point-kinetics parameters.
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Table I: Nuclear Data for Analytic Problem 1

g σt σc σf ν χ σsg1 σsg2

1 2 1/2 1/2 3/4 1 1/2 1/2
2 3 1 1 9/2 0 0 1
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Table II: Sensitivity Results for Analytic Problem 1

x Exact Sk,x MCNP6 Sk,x C/E
σc1 −1/3 −0.33343 ± 0.05% 1.000
σc2 −3/8 −0.37480 ± 0.06% 0.999
σf1 −1/12 −0.08347 ± 0.34% 1.002
σf2 +3/8 +0.37524 ± 0.08% 1.001
ν1 +1/4 +0.24995 ± 0.08% 1.000
ν2 +3/4 +0.75005 ± 0.03% 1.000
σs12 +5/12 +0.41707 ± 0.09% 1.001
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Table III: Nuclear Data for Analytic Problem 2

g σt σc σf ν χ σsg1 σsg2 σsg3

1 2 1/2 0 – 5/8 1 1/2 0
2 4 1 0 – 1/4 0 1 2
3 4 1/2 3/2 8/3 1/8 0 0 2
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Table IV: Sensitivity Results for Analytic Problem 2

x Exact Sk,x MCNP6 Sk,x C/E
σc1 −5/24 −0.20868 ± 0.10% 1.002
σc2 −1/4 −0.24993 ± 0.07% 0.999
σc3 −1/4 −0.24985 ± 0.05% 0.999
σf3 +1/4 +0.25045 ± 0.16% 1.002
ν3 +1 +1.00000 ± 0.00% 1.000
σs12 +5/24 +0.20810 ± 0.16% 0.999
σs23 +1/4 +0.25083 ± 0.15% 1.003
χ1 +5/12 +0.41688 ± 0.09% 1.001
χ2 +1/3 +0.33345 ± 0.07% 1.000
χ3 +1/4 +0.24967 ± 0.06% 0.999

Exact Ŝk,x MCNP6 Ŝk,χg C/E
χ1 −5/24 −0.20805 ± 0.12% 0.999
χ2 +1/12 +0.08339 ± 0.28% 1.001
χ3 +1/8 +0.12465 ± 0.17% 0.997
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Table V: Nuclear Data for Analytic Problem 3

g σt σc σf ν χ σsg1 σsg2 σsg3 σsg4

1 3 1 0 – 1 1 1/2 1/4 1/4
2 4 1 0 – 0 0 2 1 0
3 4 2 0 – 0 0 0 1 1
4 6 3 2 12 0 0 0 0 1
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Table VI: Group-1 Scattering Law Sensitivity Results for Analytic Problem 3

Sk,x Ŝk,x

MCNP6 MCNP6
x Exact KSEN Exact Direct KSEN C/E
f11 +1/2 +0.504 ± 1.5% −1/4 −0.257 −0.2503 ± 0.1% 1.001
f12 +1/5 +0.199 ± 1.1% −7/40 −0.180 −0.1748 ± 0.1% 0.999
f13 +1/5 +0.203 ± 1.1% +1/80 +0.013 +0.0124 ± 1.4% 0.994
f14 +3/5 +0.598 ± 0.4% +33/80 +0.405 +0.4126 ± 0.1% 1.000
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Table VII: Most Sensitive Nuclear Data for OECD/NEA UACSA Benchmark Phase III.1

xj Sj
k,x C/E (TSUNAMI-3D)

239Pu ν +0.9248 ± 0.00% 1.000
1H σel +0.4145 ± 0.27% 1.029
239Pu σf +0.3777 ± 0.02% 0.992
239Pu σc −0.2610 ± 0.02% 0.999
16O σel +0.0860 ± 0.29% 1.024
1H σc −0.0799 ± 0.05% 1.015
240Pu σc −0.0590 ± 0.04% 1.005
238U σc −0.0502 ± 0.04% 0.948
241Pu ν +0.0283 ± 0.03% 1.004
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Table VIII: Comparison of OECD/NEA UACSA Benchmark Phase III.3 Total Cross-Section
Sensitivities

MCNP6
KSEN Direct TSUNAMI MONK

LEU

1H +2.40 ×10−1 ± 0.4% +2.34 ×10−1 ± 1.3% +2.41 ×10−1 +2.45 ×10−1

C +2.74 ×10−2 ± 0.7% +2.74 ×10−2 ± 2.2% +2.77 ×10−2 +2.77 ×10−2

19F +4.38 ×10−2 ± 0.5% +4.17 ×10−2 ± 3.7% +4.56 ×10−2 +4.20 ×10−2

235U +2.53 ×10−1 ± 0.1% +2.55 ×10−1 ± 1.2% +2.53 ×10−1 +2.58 ×10−1

238U −2.01 ×10−1 ± 0.2% −2.03 ×10−1 ± 1.5% −1.95 ×10−1 −2.01 ×10−1

IEU

1H +4.54 ×10−1 ± 0.2% +4.57 ×10−1 ± 0.7% +4.55 ×10−1 +4.52 ×10−1

C +6.54 ×10−2 ± 0.3% +6.46 ×10−2 ± 1.0% +6.60 ×10−2 +6.61 ×10−2

19F +1.18 ×10−1 ± 0.2% +1.17 ×10−1 ± 1.3% +1.19 ×10−1 +1.15 ×10−1

235U +1.30 ×10−1 ± 0.2% +1.25 ×10−1 ± 2.5% +1.26 ×10−1 +1.36 ×10−1

238U −1.57 ×10−3 ± 5.4% −5.22 ×10−4 ± 20.3% +1.35 ×10−3 −1.30 ×10−3
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Table IX: Performance Data Using the OECD/NEA UACSA Benchmark Phase III.3

Time (min) Total Elastic Capture
Base KSEN % Unc FOM % Unc FOM % Unc FOM

LEU 9.9 41.5

1H 5.7 4.7× 10−1 2.8 1.9× 100 0.2 3.1× 102

C 10.9 1.3× 10−1 10.8 1.3× 10−1 0.9 1.9× 101

19F 9.2 1.8× 10−1 12.4 9.9× 10−2 0.5 6.5× 101

235U 0.7 3.6× 101 75.4 2.6× 10−3 0.2 3.8× 102

238U 1.9 4.1× 100 12.7 9.3× 10−2 0.2 2.8× 102

IEU 4.3 14.7

1H 1.3 2.5× 101 1.3 2.4× 101 0.4 3.1× 102

C 4.0 2.7× 100 4.0 2.6× 100 2.7 5.9× 100

19F 2.8 5.6× 100 3.7 3.1× 100 0.8 7.2× 101

235U 2.3 8.3× 100 11.7 3.1× 10−1 0.3 5.8× 102

238U 111.4 3.4× 10−3 8.8 5.5× 10−1 0.6 1.1× 102

44



-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 1e-10  1e-08  1e-06  0.0001  0.01  1

ke
ff 

S
en

si
tiv

ity
 / 

Le
th

ar
gy

Neutron Energy (MeV)

TSUNAMI-3D
MCNP6
MONK

Figure 1: Comparison of 238U total cross-section sensitivities for OECD/NEA UACSA
Benchmark Phase III.1
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Figure 2: Comparison of 1H elastic scattering cross-section sensitivities for OECD/NEA
UACSA Benchmark Phase III.1
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Figure 3: Comparison of constrained 239Pu fission-χ sensitivities for OECD/NEA UACSA
Benchmark Phase III.1
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Figure 4: Energy-resolved constrained elastic scattering law sensitivity per lethargy of 1H
in the fast energy range for OECD/NEA UACSA Benchmark Phase III.1.
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Figure 5: Energy-resolved constrained elastic scattering law sensitivity per lethargy of 1H
in the epithermal energy range for OECD/NEA UACSA Benchmark Phase III.1.
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Figure 6: Energy-resolved constrained elastic scattering law sensitivity per lethargy of 1H
in the thermal energy range for OECD/NEA UACSA Benchmark Phase III.1.
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Figure 7: Energy-resolved constrained total scattering law sensitivity per lethargy of 16O in
the fast energy range for OECD/NEA UACSA Benchmark Phase III.1.
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Figure 8: Comparison of MCNP6 KSEN estimates with those obtained with direct density
perturbations for OECD/NEA UACSA Benchmark Phase III.2.
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